506 research outputs found

    A Dialectical Basis for Software Development Tool Building

    Get PDF
    We identify typical problems in the interactions of people with current software-based systems. In particular we observe the need to expend significant on-going effort to adapt these systems to reflect changes in the world about them, the need for people to adapt their working practices to fit in with these systems, and the inflexibility of these systems when faced with unusual circumstances or the need for change. We believe that these problems follow, at least in part, from these systems being developed and evolved using mechanisms each based on one Inquiry System only. This basis leads to assumptions being embedded in the mechanisms’ analysis outputs, and in system designs and implementations. We suggest that the problems noted may be mitigated by the use of a dialectical approach to Inquiry System selection for software development, based on the work of Hegel, which places in opposition different models of a situation based on different Inquiry Systems. We claim that such a mechanism has the potential to make explicit some of the assumptions which would otherwise be embedded implicitly in the delivered system without being questioned. We outline a research programme intended to test this hypothesis, and suggest other research directions

    Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    Full text link
    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications

    Structural and electrical transport properties of superconducting Au{0.7}In{0.3} films: A random array of superconductor-normal metal-superconductor (SNS) Josephson junctions

    Full text link
    The structural and superconducting properties of Au{0.7}In{0.3} films, grown by interdiffusion of alternating Au and In layers, have been studied. The films were found to consist of a uniform solid solution of Au{0.9}In{0.1}, with excess In precipitated in the form of In-rich grains of various Au-In phases (with distinct atomic compositions), including intermetallic compounds. As the temperature was lowered, these individual grains became superconducting at a particular transition temperature (Tc), determined primarily by the atomic composition of the grain, before a fully superconducting state of zero resistance was established. From the observed onset Tc, it was inferred that up to three different superconducting phases could have formed in these Au{0.7}In{0.3} films, all of which were embedded in a uniform Au{0.9}In{0.1} matrix. Among these phases, the Tc of a particular one, 0.8 K, is higher than any previously reported for the Au-In system. The electrical transport properties were studied down to low temperatures. The transport results were found to be well correlated with those of the structural studies. The present work suggests that Au{0.7}In{0.3} can be modeled as a random array of superconductor-normal metal-superconductor (SNS) Josephson junctions. The effect of disorder and the nature of the superconducting transition in these Au{0.7}In{0.3} films are discussed.Comment: 8 text pages, 10 figures in one separate PDF file, submitted to PR

    Microwave-induced control of Free Electron Laser radiation

    Full text link
    The dynamical response of a relativistic bunch of electrons injected in a planar magnetic undulator and interacting with a counterpropagating electromagnetic wave is studied. We demonstrate a resonance condition for which the free electron laser (FEL) dynamics is strongly influenced by the presence of the external field. It opens up the possibility of control of short wavelength FEL emission characteristics by changing the parameters of the microwave field without requiring change in the undulator's geometry or configuration. Numerical examples, assuming realistic parameter values analogous to those of the TTF-FEL, currently under development at DESY, are given for possible control of the amplitude or the polarization of the emitted radiation.Comment: 14 pages, 5 figures, accepted for publication in Phys. Rev.

    Interesting magnetic properties of Fe1−x_{1-x}Cox_xSi alloys

    Full text link
    Solid solution between nonmagnetic narrow gap semiconductor FeSi and diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with long-range helical magnetic ordering, for a wide range of intermediate concentration. We report various interesting magnetic properties of these alloys, including low temperature re-entrant spin-glass like behaviour and a novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya interaction in the magnetic response of these non-centrosymmetric alloys is discussed.Comment: 11 pages and 3 figure

    Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition

    Get PDF
    Porous anodic films on 1050 aluminium substrate were coloured by AC electrodeposition of nickel. Several experiments were performed at different deposition voltages and nickel concentrations in the electrolyte in order to correlate the applied electrical power to the electrical behaviour, as well as the characteristics and properties of the coatings. The content of nickel inside the coatings reached 1.67 g/m2, depending on the experimental conditions. According to the applied AC voltage in comparison with the threshold voltage Ut, the coating either acted only as a capacitor when U\Ut and, when U[Ut, the behaviour during the anodic and cathodic parts of the power sine wave was different. In particular, due to the semi-conducting characteristics of the barrier layer, additional oxidation of the aluminium substrate occurred during the anodic part of the electrical signal, whilst metal deposition (and solvent reduction) occurred during the cathodic part; these mechanisms correspond to the blocked and pass directions of the barrier layer/electrolyte junction, respectively

    The celebrity entrepreneur on television: profile, politics and power

    Get PDF
    This article examines the rise of the ‘celebrity entrepreneur’ on television through the emergence of the ‘business entertainment format’ and considers the ways in which regular television exposure can be converted into political influence. Within television studies there has been a preoccupation in recent years with how lifestyle and reality formats work to transform ‘ordinary’ people into celebrities. As a result, the contribution of vocationally skilled business professionals to factual entertainment programming has gone almost unnoticed. This article draws on interviews with key media industry professionals and begins by looking at the construction of entrepreneurs as different types of television personalities and how discourses of work, skill and knowledge function in business shows. It then outlines how entrepreneurs can utilize their newly acquired televisual skills to cultivate a wider media profile and secure various forms of political access and influence. Integral to this is the centrality of public relations and media management agencies in shaping media discourses and developing the individual as a ‘brand identity’ that can be used to endorse a range of products or ideas. This has led to policy makers and politicians attempting to mobilize the media profile of celebrity entrepreneurs to reach out and connect with the public on business and enterprise-related issues

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure
    • 

    corecore